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Introduction
Demand forecasting serves as a critical step in the planning, design and evaluation of a rate structure. 
In order to ensure that revenue collected will cover costs, water suppliers need to anticipate how 
much water they expect to sell. As water rates are typically reviewed and revised every few years, 
it is also important that water suppliers forecast future demand several years in advance to ensure 
that sufficient funds are collected.

Robust evaluation of efficiency-oriented rate structures requires an additional layer of forecasting 
impacts. Since variations in demand tend to create revenue volatility, forecasting models must 
consider the impact of block rate structures not just on demand, but also on sales revenue. Accurately 
forecasting long-term sales volume lies at the heart of establishing a correct rate level. Analysts must 
consider water supply availability, future water demand, and the effect of different types of rates on 
revenue.

This appendix covers approaches, concepts and methods for water demand and water sales/
revenue modeling.1 

Demand Modeling
Different types of models can be used to incorporate the various forces driving water demand. Models 
can be classified as aggregate (total water demand for an entire service area or customer class) 
or disaggregate (demand by individual customer or individual end uses). In principle, disaggregate 
models can answer a wider range of questions; they also require more detailed data, more data 
manipulation, and more data validation effort. For readers interested in pursuing a modeling effort 
using disaggregated data, an example of disaggregate models applied to the prediction of revenue 
uncertainty can be found in Chesnutt, et al. (1995b). For the heuristic purposes of this handbook, 
aggregate data are used to illustrate models of water demand. 

Most methods used to predict the effect of rate changes on demand response look at average water 
demand. Customer billing records provide a good tool for seeing these demand distributions, which 
tend to be very skewed. Figure B.1 depicts the parametric demand distribution from a random 
sample of single family customers using recent year data—with values for the mean and standard 
deviation (logarithm of bimonthly use) of 3.4 and 0.7 respectively. The distribution is notably skewed 
to the right; relatively few customers use a large amount of water. 

1	 Parts of this appendix were adapted from “Designing, Evaluating, and Implementing Conservation Rate Structures”, July, 1997, 
California Urban Water Conservation Council.
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Figure B.1 Distribution of Single Family Water Demand

A right-skewed distribution complicates the design of block rate structures. Revenue prediction for 
block rate structures requires a more nuanced model than average water demand alone; it requires 
a model of the entire demand distribution (Chesnutt, et al. 1995b). The rate analyst might want to 
know how many customers and how much water would be affected by a second block. To estimate 
revenue, the analyst must know how much water is affected by the higher price in the second block. 
The next complication in estimating revenue from blocks is accounting for the fact that not all of the 
water used by customers in the second block is priced at the higher second price. 

Model Zero: Water Requirements Model
The date is July 14, 2010. The location is West Anywhere. The water manager of the West Anywhere 
Water Authority (WAWA) has asked the in-house expert to forecast water sales for next year. The 
rate analyst hit the recalculate button on the computer and results were produced: water sales in 
the next year will be about 35 thousand acre feet. The manager inquired as to the model behind 
this prediction. “Well, the city planning department has projected next year’s population of around 
170 thousand people and water requirements for the last twenty years have averaged about 183 
gallons per capita per day. The rest is algebra (170,000 people x 183 gallons per capita per day x 365 
days per year / 325900 gallons per AF = 34,842 AF)”.

The astute manager, worried that recent trends might change the result, asked the analyst to repeat 
the calculation using water requirements only from the last three years. The rate analyst hit the 
recalculate button on the computer, the lights dimmed, and results were produced: water sales 
in 2011 will be 35,600 thousand acre feet. “Are you sure,” demanded the manager? “Yes, I hit the 
recalculate button three times before the lights blew. I got the same answer each time.” 
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Confident in this sensitivity analysis, the water manager adopted 35 thousand acre feet as the 2011 
sales forecast. The water sales in the next year ended up being less than 27 thousand acre feet. 
Later the manager and the analyst compared notes in the unemployment line: “Where did we go 
wrong?” They decided to think more formally about their mistaken analysis. They began with a 
formal statement of the water requirements model:

Sales Quantity = f (Population), or
 Q=Pop∙μ, where
 μ ≡ mean use per person

They decided that this explanatory model should be expanded to account for more determinants of 
water demand. They decided that to conduct their retrospective analysis in a spreadsheet (demand.
xls) using a monthly data set compiled by the previous year’s summer intern.

Model 1: A Very Simple Water Use Model
The first step to improving the water requirements model requires adding additional explanation 
to the sales model. A simple possibility would be to add measures of weather— temperature and 
precipitation—to the model. In functional notation, the model would be described as: 

Sales Quantity = f (Population, Temperature, Rainfall)

To make the model explicit, one must specify exactly how these determinants relate to sales, that is, 
the form of the function f. A simple possibility would be a linear equation for monthly water sales:

Through the miracles of modern statistical technology, the four coefficients (β0 - β3) can be estimated 
to “fit” this surface to observed data. Each of the β parameters also has an interpretation—β0 is the 
“intercept” that represents a constant level of sales each month and the other β’s are the “slope” 
coefficients of the determinants. These slope coefficients represent how water sales would change 
if one determinant changes by a small amount while all other determinants remained unchanged. 
For example, we expect use to decrease if rainfall increases in a given month; therefore β3 should 
be a negative quantity. The reverse holds for temperature and population, so β1 and β2 should be 
positive values.

If life were simple, the systematic determinants in the model described by the equation above would 
fit the data perfectly: all water sales on record would lie on the plane defined by f. Clearly, this will 
not be a problem that many analysts need lose sleep over. The vertical distance from any point to 
this plane defines the nonsystematic error in the model. Defining this quantity by ε, the very simple 
model of water use (Model 1 in the spreadsheet) can be described as 

In general, modelers are happier when they can minimize the unexplained random error of a model 
while maximizing a model’s explanatory power. The most popular regression method, Least Squares, 
derives its coefficient estimates so as to minimize the (squared) error around the equation. 
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Current generation spreadsheets implement Least Squares regression as an analysis option. The 
reader may visit the accompanying spreadsheet (demand.xlw) to produce estimates of the four 
coefficients in the model described by equation above. 

These estimates imply the following water use equation:

The coefficients may be interpreted as the effect, with everything else constant, of a one unit change 
in the determinant upon the dependent variable, water sales. Thus, a one unit increase in Anywhere 
population (one thousand people) would result in a .31 acre foot per day increase in monthly water 
sales. Similarly, a one unit increase in precipitation (inches per day) would result in a 53.4 acre foot 
per day decrease in monthly water sales and a one unit increase in monthly average maximum daily 
air temperature (degrees Fahrenheit) would result in a 1.6 acre foot per day increase in monthly 
water sales. Note that our unemployed research team was careful to standardize all measures for 
the number of days in the month to ensure comparability.

Critique: The main strength of this model is ease of explanation. Technically, the model has more 
than a few shortcomings. The “fit” of the model is not terrific for a trending dependent variable. The 
R2 statistic (R2=.77) refers to the proportion of the variation in water sales explained by the model; 
Model 1 explains about 77 percent of the variation in water sales. The estimated error, implied 
by the estimated coefficients, is far from random. (This can be verified by plotting the estimated 
error, or a 12 month moving average, over time.) The functional form of the model asserts that the 
estimated effects remains the same in each month throughout the year; one inch of rain in January, 
for instance, would produce the same drop in sales as an inch in July. The rainfall and temperature 
measures are also highly (negatively) correlated; when rainfall increases, air temperature tends 
to decrease. This makes it difficult for any amount of statistical magic to discern the independent 
effect of each. The functional form of the model only allows for seasonal movement in sales through 
seasonal movements in temperature. Last, this model implies that changes in the price of water 
have no effect upon the level of water sales. None. Zero. 

Model 2: A Simple Water Demand Model
To improve upon Model 1, several changes are adopted. First, a different functional form is 
specified—a logarithmic transformation—for the dependent variable and the independent 
variables. A different functional form illustrates a different connection between water demand and 
its determinants, a set of coefficients having different statistical properties, and a different set of 
coefficient interpretations. Second, Model 2 permits a separate intercept term for each month to 
better capture a constant seasonal pattern. Third, the climatic measures are expressed somewhat 
differently. Instead of the absolute amount of rainfall that fell in a month, the model uses the 
amount of rain minus the average rainfall for the month. Similarly, temperature is expressed as its 
deviation from monthly mean temperature. Logarithmically transformed population is expressed as 
its deviation from sample mean. Last, a measure of real (inflation-adjusted) marginal price is added 
to the model. Because all measures are logarithmically transformed, the estimated coefficients can 
be interpreted as elasticities: the percentage effect that a one percent change in the determinant 
will have on water sales. (Because the mean monthly amount of daily rainfall is fractional, a scaling 
factor of one is added prior to logarithmic transformation.)
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Re-expressed, the second attempt at model improvement results in the following model specification:

Table B.1 provides the regression estimates of the Model 2 coefficients that imply the following 
monthly water demand equation. 

Table B.1 A simple Model of Water Demand

The coefficients can be interpreted as 
the percentage effect on water demand 
associated with a one percent change 
in the determinant, with everything 
else constant. Thus, a one percent 
increase in Anywhere population 
results in almost one percent increase 
in monthly water demand. A one 
percent increase in the real price of 
water results in less than a tenth of one 
percent decline in water demand. A one 
percent increase in precipitation (over 
its monthly mean) results in a .8 percent 
in monthly water demand and a one 
percent increase in monthly average 
maximum daily air temperature (over 
its monthly mean) results in a .9 percent 
increase in monthly water demand. 
The intercept term has been given a 
seasonal dimension; each month has its 
own intercept. This monthly intercept 

represents an estimate of the normal water use pattern over the historical period. 

Critique: The strength of Model 2 is that it carefully separates a constant seasonal pattern from 
the climatic measures. Because any constant seasonal pattern has been removed from the 
climatic measures (the monthly averages of climate are estimated via “interim” regressions in the 
spreadsheet), the “departure-from-mean” form of rainfall and temperature are independent of the 
seasonal effect (the 12 monthly indicator or dummy variables). The logarithmic transformation of 
water use results in a less skewed dependent variable and a better fitting equation. The improved 
fit implies that the model is leaving less unexplained; the random error that remains is 1) smaller 
in magnitude, 2) more normally distributed, and 3) has less “structure” in it. The model, though 
straightforward and parsimonious, is still far from perfect:
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�� The effect of a drought in earlier historical periods has been ignored.

�� The effects of WUE (conservation) programs) have been ignored.

�� The effect of climate is constant through the year (a one percent increase in temperature 
above normal has the same percentage effect in July and January.)

�� The effect of climate has no memory (last month’s or year’s climate does not effect the 
current month.)

�� The equation error still contains information that could be used to improve the (efficiency of) 
statistical estimation of the structural coefficients.

Further caveats are in order for the statistical estimate of the response of water demand to price. 
Even the single (mean) price elasticity produced by aggregate demand models tends to be very 
sensitive to model specification and the period of time over which the model is estimated. The 
fact that aggregate time-series models tend to produce unstable estimates of price response can 
be attributed to several factors: 1) insufficient variation in historical water rates, 2) measurement 
error in the price measure (any single price measure used—modal, median, or some melded 
average—does not reflect the true marginal price faced by each customer), and 3) omitted long-run 
determinants due to lack of measures or an insufficiently long time period. Empirical investigators 
interested in estimating the determinants of demand tend to favor customer-specific models to 
bring the weight of more data to bear on these difficult questions. 

Model 2 does illustrate, however, that careful data construction can produce a simple model with 
plausible estimates of short and long-run determinants of demand. Other useful ingredients for 
rate evaluation also can be derived from this model. One construct that will prove very handy in the 
next section is a measure of the percentage effect of climate on aggregate demand. Since climatic 
uncertainty is a very important driver of demand uncertainty in the short-run, quantifying the 
magnitude of this uncertainty allows the analyst to construct a measure of revenue risk. Similarly, an 
estimate of the demand pattern under normal weather conditions—a constant seasonal pattern—
can be derived. Estimating an average seasonal pattern permits empirical testing for changes to 
the pattern of seasonal peaking. Last, the model provides an explicit method for addressing how 
changes in rates can affect water demand.
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Revenue and Sales Modeling
Most methods used to predict the effect of rate changes on demand response look at average 
water demand. Block rate structures, however, require a more nuanced model than average water 
demand alone; they require a model of the entire demand distribution (Chesnutt, et al. 1995b). 
Customer billing records provide a good tool for seeing these demand distributions. The distribution 
of customer use tends to be very skewed. To illustrate, a random sample of single family customers 
was taken from the WAWA billing system, with data including meter read date, meter read amount 
(in one hundred cubic feet, CCF), and the number of days in the billing system. For the purposes of 
illustration, Figure B.2 depicts the parametric demand distribution using the recent year data—with 
values for the mean and standard deviation (logarithm of bimonthly use) of 3.4 and 0.7 respectively. 
The distribution is notably skewed to the right; relatively few customers use a large amount of water. 
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Figure B.2 Distribution of Single Family Water Demand

A right-skewed distribution characterizes water use in most water utilities and complicates the 
design of block rate structures. Suppose the WAWA rate analyst wants to design an increasing-block 
rate structure with two blocks. It directly follows from Figure B.2 that if the switch point-where the 
first block ends and the second begins-were set to median water use (about 31 CCF per bimonthly), 
then half of the customers would see the lower price in block 1 and half of the customers would face 
the higher price in block 2. Does this mean half of all water consumption is facing price 1 and the 
other half faces price 2? No. The mean of the distribution in Figure B.2 (about 40 CCF) would be the 
switch point where water consumption is split in half. 
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Customer Accounts versus Water Use in an Upper Block	
The WAWA rate analyst might want to know how many customers and how much water would be 
affected by a second block. Figure B.3 plots the proportion of customer accounts falling into the 
second block as the block switch point changes. To estimate revenue, the analyst must know how 
much water is affected by the higher price in the second block. Figure 8.3 also illustrates that the 
proportion of water use falling into the upper block is greater than the proportion of accounts. This 
fact is directly implied by the right skewed distribution of water consumption.
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Figure B.3 Customer Accounts versus Water Use in an Upper Block

The next complication in estimating revenue from blocks is accounting for the fact that not all of 
the water used by customers in the second block is priced at the higher second price. The first k 
units (where k is the number of units in the first block) are priced at the lower first price. Figure 
B.4 removes the first k units for each customer in the second block to arrive at the line (with the 
crosses) that depicts, for any switch point, the proportion of total water use priced at the higher, 
block 2 price. 
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Figure B.4 Proportion of Total Water Use Priced at Price 2

Revenue prediction for block rates requires a deeper understanding of demand distributions. 
Household demand models can generate the expected (mean) demand in a given time period, E[Qt], 
and a measure of the dispersion about that mean, the variance V[Qt]. These two parameters are 
sufficient, for any given rate structure, to determine system revenue. For a uniform rate structure, a 
model of system revenue requires only expected demand:

where N is the number of accounts in this customer class and α is a fixed charge. 

Alternatively, system revenue can be expressed as the combination of fixed revenue and variable 
revenue:

A seasonal rate structure requires the addition of a time index to this equation. Block-rate structures 
require knowledge of both the mean and the dispersion. The model of system revenue from block 
rate structures uses the demand models to predict the proportion of accounts (n/N) and the 
proportion of water use (ρ) that fall within a consumption block. For example, the variable revenue 
from accounts falling entirely within the first block (from 0 consumption units to q1 consumption 
units) is:

Variable revenue from accounts in the second block will be broken into two parts: (1) revenue from 
the first block (the quantity of water in the first block times the first block price), and (2) the additional 
revenue from the second block (the amount of water in the second block times the second block 
price):
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The key to carrying out this kind of calculation is arriving at (1) the proportion of accounts that fall 
within each block ρ (= n/N), and (2) the proportion of total use falling within a block (ρi).
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Simulation Methods — A Monte Carlo Example of Revenue Volatility
The propensity of a rate structure to generate revenues that exactly match the revenue requirements 
of a water utility is subject to risks involving both supply and demand. These risks can produce 
revenue instability in the form of both revenue surpluses and revenue shortfalls. These risks are 
associated with changes in the number of customers, changes in customer mix [e.g., the loss of a 
large user], changes in usage patterns, changes in weather, changes in conservation ethic, changes 
in the price elasticity of water demands, and changes in rate structure [Beecher and Mann, 1991].

An important additional source of risk comes from supply or drought-driven curtailments. These 
sources of risk need to be assessed in the process of determining revenue requirements and 
mechanisms such as contingency funds and automatic rate adjustments put in place for coping with 
the unanticipated revenue changes [Chesnutt, et al, 1995b]. One of the other important drivers of 
short-term revenue uncertainty is climatic uncertainty. This exercise uses the estimated historical 
effect of climate from the aggregate model of demand. 

Analysts are encouraged to aggregate the swings in revenue over multiple months or even multiple 
years. The estimated risk of revenue surplus (or deficit) will be greater over a multiple year period 
due to streaks of hot and dry (or cool and wet) weather. The magnitude of the increase in multiple 
year risk depends directly on the ability of utilities to adjust their rates over time to cope with revenue 
swings. Chapter 4 of Building Better Rates for an Uncertain World on Financial Policies discusses 
some of dynamic rate adjustment strategies to cope with revenue risks. In an ideal world, rate 
analysts would calculate revenue risks for each rate alternative. For an impression of how different 
rate structures can vary in terms of revenue risk, readers are referred to Chesnutt, et, al. 1996.


